
This project has received funding from the European Union’s Seventh
Framework Programme for research, technological development and

demonstration under grant agreement no 318389

Tutorial on OpenFlow
Fed4FIRE – GENI Research Experiment Summit (FGRE 2014)

Carlos Bermudo, Oscar Moya, Frederic Francois

July 9th 2014

2

Introduction

 Refreshing OF and Optical OF concepts

 OF and OOF slicing

 OpenFlow testbeds

 Running an OF experiment

 POX tricks & tips

 OOF Demo

Definition: OpenFlow

 Characteristics:

◦ Software controller

◦ Secure channel with

devices

◦ Matching on OF packet

headers

Definition: Optical OpenFlow

Objectives

1. Enable the control of optical switches through the OpenFlow

Protocol (currently using OF v1.0 with circuit extensions v0.3)

2. A single OpenFlow controller to control both optical and packet

switches with the resulting benefits:

a) abstraction of the whole network to enable simpler

network management

b) seamless coordination of packet and optical networks

Optical OpenFlow: Architecture

OpenFlow Agent OpenFlow Agent

OpenFlow Agent

Optical Flowvisor

Optical OFAM

SFA

Optical OpenFlow: Agents

OpenFlow Channel

Application Logic

NE Control and
Management

 Channel

O
p

e
n

Fl
o

w
 A

ge
n

t

Control and
Management Agent

O
p

ti
ca

l D
ev

ic
e

s

 Maintains a secure OpenFlow connection with the OpenFlow
controller

 Acts as proxy between the OpenFlow controller and the
Application Logic

  Implements a Resource Model to map the proprietary device
feature description to the standardized OpenFlow
description, i.e. map Device specific syntax to OpenFlow
syntax

 Resource Model enables the retrieval of optical device
description and the configuration of the optical device

 The functionality constraints of the optical device can be
derived from the Resource Model description

 Network Equipment control and management channel
communicates with its counterpart agent on the optical
device to retrieve management information and enable
configuration. The channel is specific to the type of device
being controlled

1. ADVA
2. Architecture on

Demand (AoD)
3. Transceivers

Optical OpenFlow: Extensions

OpenFlow
Messages

Flow Mod

(Actions)

Switch
Feature

Fixed

Flexible

Port Peering

Channel spacing per port

Channels per port

Constraints per
port

Power

 impairments

Bandwidth range and granularity per port

Center frequency range and granularity per port

Signal type (modulation) per port

Constraints per port
Power

Impairments

Add/Delete
XC

Fixed Ports, channels, constraints, type

Flexible Ports, bandwidth, center frequency, type
Configure

Tx/Rx

Technology/Domain Cross Overs

Software: OpenFlow controllers’ overview

 Platform / Framework that allow experimenters to develop components /
applications to control the behavior of their data flows

 NOX, POX

◦ NOX: 1st OpenFlow controller

◦ POX: high-level SDN API

◦ Supported protocol(s): OpenFlow 1.0

◦ Supported language(s): C++ (NOX), Python (POX)

◦ https://github.com/noxrepo/nox-classic/wiki/Developing-in-NOX

◦ https://openflow.stanford.edu/display/ONL/POX+Wiki

 Ryu
◦ Open-sourced Network Operating System (NOS)

◦ Supported protocol(s): OpenFlow 1.0, 1.3, 1.4

◦ Supported language(s): Python

◦ http://ryu.readthedocs.org/en/latest/writing_ryu_app.html

http://yuba.stanford.edu/~casado/of-sw.html

https://github.com/noxrepo/nox
http://www.noxrepo.org/support/about-pox/
http://www.osrg.net/ryu/
https://github.com/osrg/ryu

Software: Flow slicing

 The problem

◦ Each experiment generates a set of data flows

◦ Multiple experiments running at the same time

◦ Different data flows (experiments) must be isolated

 FlowVisor

Special purpose OpenFlow controller that acts as a transparent proxy between

OpenFlow switches and multiple OpenFlow (user) controllers.

Software: Flow slicing

 FlowVisor

Software: Optical Flowvisor & OFAM

Flowvisor has been extended:

1. To support new OpenFlow messages required for the optical devices.

2. To enable its Slicer component to slice according to optical ports and wavelengths.

OFAM has been extended to support the reservation of optical switches through SFA.

<openflow:datapath
 component_id="urn:publicid:IDN+optical:openflow:ofam:univbris+datapath+00:00:00:00:0a:21:00
:0a"
 component_manager_id="urn:publicid:IDN+optical:openflow:ofam:univbris+authority+cm" dpid="0
0:00:00:00:0a:21:00:0a"> ……

Advertisement RSpecs Snippet

<openflow:link
component_id="urn:publicid:IDN+optical:openflow:ofam:univbris+link+00:00:00:00:0c:21:00:0a_1_00:00:00:00:0b:21:00:0a_3">
<openflow:wavelength value="193.8"/>
</openflow:link>

Frequency supported in link

Optical keyword mean this is an optical switch

Software: Optical Flowvisor & OFAM

<openflow:group name="fs1">
 <openflow:datapath
 component_id="urn:publicid:IDN+optical:openflow:ofam:univbris+datapath+00:00:00:00:0a:21:0
0:0a"
 component_manager_id="urn:publicid:IDN+optical:openflow:ofam:univbris+authority+cm”
 dpid="00:00:00:00:0a:21:00:0a">
 <openflow:port name="MOD-5-9" num="1001“/>
 </openflow:datapath>
</openflow:group>

Reservation RSpecs Snippet 1

A new flowspace definition must be added to the reservation RSpecs to support optical flowspaces.

New OpenFlow groups should be defined to contain only optical OpenFlow switches and ports. It

is possible to add OpenFlow groups for packets in the same reservation RSpecs but these

groups should not contain optical switches and ports.

<openflow:match>
 <openflow:use-group name="fs1" />
 <openflow:circuit>
 <openflow:wavelength name = “193.8”/>
 </openflow:circuit>
</openflow:match>

Reservation RSpecs Snippet 2

OpenFlow matches can now be specified over the optical OpenFlow group that were defined

above. For example, the wavelength(s) specified in snippet 2 will be reserved over the whole

OpenFlow group “fs1”, i.e. in all the ports of the switches specified in snippet 1.

OpenFlow testbeds: i2CAT

5 x NEC IP8800/S3640-24T2XW, 24 ports (1/10GE)
3 x dedicated physical servers

To i2CAT
network and

Internet

Ethernet switch
and VPN server

OFELIA

5 NEC Openflow-enabled switches

OFELIA

SMC, 10G Ethernet
switch

Nx 1GbE

To other
OFELIA islands

10GbE

DWDM ring,
Barcelona

Rest of EXPERIMENTA infrastructure

To i2cat
network

i2cat labs

Connection

to RedIRIS
1GbE

EHU

(University of the Basque Country)

OpenFlow Enabled Facility

Layer2
connectivity

OpenFlow testbeds: UNIVBRIS
4 x Packet Switches (NEC IP8800)
2 x dedicated virtualization servers
3 x fixed WDM optical switches (ADVA FSP3000)

 Connectivity in Fed4FIRE

OF testbeds in federation environments

UNIVBRIS

i2CAT

Public
Internet

VirtualWall

L2 VPN

Running an experiment

1. Creating the slivers

VT AM

OF AM

S
F
A

S
F
A

FV

CLI/UI
jFed
SFI

OMNI

createSliver

define links

Running an experiment

1. Creating the slivers

2. Setting the controller

VT AM

OF AM

S
F
A

S
F
A

FV

CLI/UI
jFed
SFI

OMNI
set controller

Running an experiment

1. Creating the slivers

2. Setting the controller

3. Sending data within the slice

VT AM

OF AM

S
F
A

S
F
A

FV

CLI/UI
jFed
SFI

OMNI

transmitter

receiver

19

Let’s Create a Slice

1. Create the Vwall Node using jFED

2. Create the i2CAT VMs

3. Create the univbris VMs

4. Reserve FS at i2CAT

5. Reserve FS at Bristol

20

Supporting files

 Download and unzip the file at:

◦ http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-

summer-school/

 Let’s take a look at the topology 

http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/
http://univbrisofeliaf4f.blogs.ilrt.org/fed4fire-geni-summer-school/

21

Creating a Node on vwall2 using jFed

 http://jfed.iminds.be

 Quick Start

 Login

 Open

◦ jFedi2CAT.rspec

 Run

22

Creating VM at i2CAT

 Edit file i2catVM.rspec

◦ <name>tutorialVM</name>  alphanumeric name

for the virtual machine

 Execute

◦ omni createslice <SLICENAME>

◦ omni -a https://137.222.204.27:5001/xmlrpc/sfa/

createsliver <SLICENAME> i2catVM.rspec

 Save the IP address, it will be the controller

23

Creating VM at univbris

 Edit univbrisVM.rspec

◦ <name>tutorialVM</name>  alphanumeric name

for the virtual machine

 Execute

◦ omni -a https://137.222.204.27:8445/xmlrpc/sfa/

createsliver <SLICENAME> univbrisVM.rspec

24

Reserving the FS at i2cat

 Edit i2catOF.rspec

◦ <openflow:controller url="tcp:10.216.12.29:6633"

type="primary"/>  replace controller IP by the

previous one returned by i2CAT manifest RSpec

◦ <openflow:dl_vlan value="778" />  vlan number

 Execute

◦ omni -a https://137.222.204.27:5005/xmlrpc/sfa/

createsliver <SLICENAME> i2catOF.rspec

CAUTION: Do not use the same VLAN and modify the controller
IP by one of the IPs obtained in manifest RSpecs

25

Reserving the FS at univbris

 Edit univbrisOF.rspec

◦ <openflow:controller url="tcp:10.216.12.29:6633"

type="primary"/>  replace controller IP by the

previous one returned by i2CAT manifest RSpec

◦ <openflow:dl_vlan value="778" />  vlan number

 Execute

◦ omni -a https://137.222.204.27:3626/sfa/2/

createsliver <SLICENAME> univbrisOF.rspec

CAUTION: Do not use the same VLAN and modify the controller
ip by one of the IPs obtained in manifest RSpecs

26

Access & Configure the VMs

 Open console in vwall node

 ssh the VMs using root@vm_ip

 apt-get install vlan

 ifconfig <iface> up (for this tutorial: eth1)

 vconfig add <iface> <vlan>

 ifconfig <iface>.<vlan> 192.168.12.X/24 up

 ifconfig <iface>.<vlan> mtu 1496

27

Access and configure the Controller

1. access to the vwall node

2. ssh to the controller (root:openflow)

3. apt-get update

4. apt-get install git

5. git clone https://github.com/noxrepo/pox.git

6. git checkout dart

7. cd pox/

8. ./pox.py forwarding.l2_learning

https://github.com/noxrepo/pox.git
https://github.com/noxrepo/pox.git

28

Try ping between nodes

 Ping, ping, ping

◦ from virtual wall to univbris VM

 You may have to add manually the ARP table at the iMinds node.

arp –s srcIP srcMAC

(this is not related with the OF experiment, is related with the
QinQ link)

29

POX overview

 To run an app:

 ./pox.py <python path to app name>

◦ --port

◦ --verbose

◦ --loglevel

30

My first App

 In /pox directory, create a *.py file

 Import (at least) nox core and OF lib and some utils

◦ from pox.core import core

◦ import pox.openflow.libopenflow_01 as of

◦ from pox.lib.util import dpid_to_str

 Set up the launch() method

 Develop your app

def launch (**kwargs):
 core.registerNew(<MyApp>,kwargs)

31

POX tricks – Listen events

1. Register callback functions for specific events thrown by either
the OpenFlow handler module or specific modules like
Topology Discovery

◦ From the launch or from the init of a class,
perform core.openflow.addListenerByName(“EVENTNAME”,
CALLBACK_FUNC, PRIORITY)

2. Register object with the OpenFlow handler module or specific
modules like Topology Discovery

◦ From typically the init of a class, perform addListeners(self).
Once this is added, the controller will look for a function with
the name _handle_EVENTNAME(self, event). This method is
automatically registered as an event handler.

[1]

[1]

32

POX tricks – Parse packets

 From a handled event (i. e. packet-in) POX

provides ways to parse the packet and

identify the headers.

 packet = event.parsed

 mac = packet.src

 packet.type [ipv4, icpm, tcp, etc.]

33

POX tricks – Send messages

msg = of.ofp_packet_out()

message msg.buffer_id = event.ofp.buffer_id

msg.in_port = packet_in.in_port

msg.match = of.ofp_match.from_packet(packet)

action = of.ofp_action_output(port =

of.OFPP_FLOOD)

msg.actions.append(action)

self.connection.send(msg) [1]

34

Advices

 Read ALL samples

 Catch ALL exceptions

 Log ALL with info

 Use existing apps

 Remember that POX can load several

apps at the same time

 If possible, apply TDD. Ensure that the

code of your app is almost bullet-proof

Slide powered by
master Yoda

35

Optical OpenFlow Demo Introduction

36

Optical Flowvisor Demo WorkFlow

1. NOX controller with optical application and

normal L2 switch application

2. Reservation of a combined optical and

packet flowspace

3. Perform cross-connections in the optical

domain

4. Test ping and iperf through the combined

optical flowspace

37

Documentation

http://univbrisofeliaf4f.blogs.ilrt.org/

http://univbrisofeliaf4f.blogs.ilrt.org/
http://univbrisofeliaf4f.blogs.ilrt.org/

38

References

 [1] http://sdnhub.org/tutorials/pox/

 https://openflow.stanford.edu/display/ONL/P

OX+Wiki#POXWiki-FAQs

 http://blog.pythonicneteng.com/2013/02/ope

nflow-tutorial-with-pox.html

http://sdnhub.org/tutorials/pox/
http://sdnhub.org/tutorials/pox/
http://sdnhub.org/tutorials/pox/
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-FAQs
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-FAQs
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-FAQs
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-FAQs
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html
http://blog.pythonicneteng.com/2013/02/openflow-tutorial-with-pox.html

39

Questions?

OpenFlow

SWITCH

CONTROLLER

40

Acknowledgement

 This work was carried out with the support of the Fed4FIRE-project (“Federation for

FIRE"), an Integrated project receiving funding from the European Union’s Seventh

Framework Programme for research, technological development and demonstration

under grant agreement no 318389

 It does not necessarily reflect the views of the European Commission. The European

Commission is not liable for any use that may be made of the information contained

herein.

41

Backup Slides

2. Software: Known issues on controllers

 Entities

◦ FlowVisor (island controller)

◦ Ryu, NOX, POX, FloodLight (user controller

 Known issues

◦ FlowVisor

 LLDP discovery sends malformed packets (junk data instead of real TLVs)

◦ Ryu

 If exceptions are not properly handled all apps will break

◦ POX

 High resource consumption

◦ FloodLight

 LLDP spam sent from the GUI makes FlowVisor to lose connection with the

switches.

3. Hardware

 NEC IP8800/S3640-24T2XW

◦ Supports OpenFlow 1.0

◦ 24 ports (1/10GE)

◦ Max. switching capacity: 88 Gbps

◦ Max. packet processing performance: 65.5 Mpackets/s

◦ Ports:

 16 x 1Gbit 1000BASE-T

